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Abstract: This paper presents a modeling approach of an industrial heating process where a
stripe-shaped workpiece is heated up to a specific temperature by applying hot air through a
nozzle. The workpiece is moving through the heating zone and is considered to be of infinite
length. The speed of the substrate is varying over time. The derived model is supposed to be
computationally cheap to enable its use in a model-based control setting. We start by formulating
the governing PDE and the corresponding boundary conditions. The PDE is then discretized on
a spatial grid using finite differences and two different integration schemes, explicit and implicit
are derived. The two models are evaluated in terms of computational effort and accuracy. It
turns out that the implicit approach is favorable for the regarded process. We optimize the grid
of the model to achieve a low number of grid nodes while maintaining a sufficient amount of
accuracy. Finally, the thermodynamical parameters are optimized in order to fit the model’s
output to real-world data that was obtained by experiments.
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1. INTRODUCTION

There are plenty of applications in process engineering
where some material is heated up to a specific temperature
in order to obtain desired properties of the treated work-
piece. In this paper a heating process is modeled, where
hot air is applied through a nozzle to the surface of a
moving substrate to increase its temperature up to the
desired level. The substrate is considered to be of infinite
length. The main focus is on deriving a model that is
accurate on the one hand but also computationally cheap
on the other hand, which is critical for being applicable in a
real-time setting such as model-based temperature control.
There exist a variety control-oriented approaches to model
such or similar processes in different industrial applica-
tions. Especially in steel industry such examples can be
found. However, in contrast to the process considered in
this paper, most of these applications assume a different
kind of work-piece transportation as in Steinboeck et al.
(2013), where discontinuous movement in a pusher type
reheating furnace is considered, or do not model heat
conduction along the thickness of the heated material as in
Strommer et al. (2018), where a strip annealing furnace is
treated. The highest similarity can be found in continuous
steel casting where both heat conduction inside the work-
piece and time-varying processing speed are considered
(Ivanova, 2013), (Wang et al., 2019).

In this paper, a stripe-shaped plastic substrate is heated,
which is comparably thin (1mm to 2mm) and the veloc-
ity changes very dynamically, ranging from 0m/min to
15m/min. For the regarded process, it is crucial, that the
surface temperature of the heated substrate has reached a
certain value at a fixed location after passing the heating
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Fig. 1. Process sketch and coordinate system

zone. Therefore, our aim is to develop a model that outputs
this temperature given the trajectories of the volumetric
flow rate of the heated air V̇ (t) and the speed of the
substrate v(t).

Previous work on control-oriented modeling of this kind of
process was already done in Weiss et al. (2018) and Weiss
et al. (2021). In the former, the heat conduction inside
the substrate was modeled by a reduced-order thermal-
electrical analogy and the heat flux into the substrate was
assumed to be an affine function of the volumetric air
flow rate V̇ (t). The transportation with variable speed was
encountered by tracking multiple points on the substrate
on their way through the heating zone separated by the
distance that the substrate traveled in a fixed time step
∆t. This resulted in a variable number of tracked points
according to the speed of the substrate. In Weiss et al.
(2021) the thermal-electrical analogy model obtained in
Weiss et al. (2018) was also used to model the heat
conduction inside the substrate but the modeling of the
heat transfer was improved by considering the actual



temperature difference between the air and the substrate’s
surface temperature. Moreover, the substrate was divided
in spatially fixed zones of constant width ∆x to overcome
the requirement to track a variable number of points on
the substrate. The time-varying speed was incorporated
by introducing a shifting scheme where the state vector
of each zone was shifted one zone further each time the
substrate has traveled the distance ∆x.

In this paper we pursue a different approach. Instead of
using a thermal-electrical analogy and order reduction
for modeling the heat conduction we will stick with the
governing Partial Differential Equation (PDE) and incor-
porate the time-varying speed by adding a transportation
term to the PDE (1). We will then derive an explicit and
an implicit integration scheme for the PDE and optimize
the resulting model in terms of computational effort and
accuracy. In contrast to the shifting-approach in Weiss
et al. (2021), this allows for more flexibility in terms of
sampling time, and it better represents the true nature of
movement, which is continuous.

2. THERMAL MODELING

A sketch of the considered process as well as the coordinate
system used throughout this paper is depicted in Fig. 1.
We start by regarding the temperature distribution inside
the substrate. Previous experiments have shown that the
heat is predominately conducted in y-direction (into the
substrate), whereas heat conduction in the x-direction
(transportation direction) as well as in z-direction plays
a minor role only and can be neglected (Weiss et al.,
2018). The governing PDE describing the dynamics of the
temperature field is thus given by

∂ϑ(x, y, t)

∂t
= a

∂2ϑ(x, y, t)

∂y2
− v(t)

∂ϑ(x, y, t)

∂x
(1)

with

a =
λ

cp · ρ
where λ is the substrate’s thermal conductivity, cp its
specific heat capacity and ρ its density. We consider
convective heat transfer. Thus, the boundary conditions
are given as

λ · ∂

∂y
ϑ(x, 0, t) = −q̇(x, 0, t) (2a)

λ · ∂

∂y
ϑ(x,W, t) = q̇(x,W, t) (2b)

with

q̇(x, 0, t) = αref(x, V̇ (t)) ·
(
ϑref(x, V̇ (t))− ϑ(x, 0, t)

)
(3a)

q̇(x,W, t) = αamb · (ϑamb − ϑ(x,W, t)) (3b)

where ϑref(x, V̇ (t)) and αref(x, V̇ (t)) denote the air tem-
perature and heat transfer coefficient on the heated side at
y = 0. On the backside, at y = W , they are denoted ϑamb

and αamb. Note, both, the heat transfer coefficient αref as
well as the air temperature ϑref depend on the volumetric
air flow rate V̇ (t), which changes over time. They also
differ along the spatial extent x according to the shape of
the flow field. We account for this by using CFD-generated
lookup tables, depicted in Fig. 2. On the backside, at
y = W , we assume αamb and ϑamb to be constant both

Fig. 2. Lookup tables for αref and ϑref generated by CFD-
simulation.

over time and along x. On the left boundary at x = 0,
we assume ϑstart to be constant, which corresponds to the
entry temperature of the substrate, which can easily be
measured in practice. For better readability the arguments
of ϑ(x, y, t) are omitted in the sequel.

3. PDE DISCRETIZATION

In order to simulate the system on a computer, we need to
discretize the PDE (1) on a spatial grid and in time. We
use a rectangular grid and finite differences to approximate
a solution of the PDE.

3.1 Grid

The temperature field is discretized using a grid as de-
picted in Fig. 3. Index i is used for discretizing the y-
coordinate, whereas j is used for the x-coordinate. The
grid size is chosen to be equidistant in x-direction whereas
in y-direction the cells of the grid grow with a growth
rate r. It was shown in Weiss et al. (2018) that the ex-
panding grid in y-direction is beneficial as it yields higher
approximation accuracy on the heated boundary of the
workpiece. This is intuitive since the temperature changes
more rapidly on the heated side than on the backside.

3.2 Derivative Approximations

The first order time derivative on the left hand side of (1)
is approximated by a simple Euler scheme given by

∂ϑ

∂t

∣∣∣∣k
i,j

≈
ϑk+1
i,j − ϑk

i,j

∆t
, (4)

where ∆t is the time between two subsequent time instants
k and k + 1. The left-hand side in (4) denotes the partial

Fig. 3. Grid used for discretizing the PDE. Grid size is
increased in y-direction and equidistant in x-direction.
The parameters used for this plot are nx = 20,
ny = 10, r = 1.2.
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Fig. 4. Grid boundary at y = 0/i = 1 and y = W/i = ny

derivative of the temperature w.r.t. time t, evaluated at
grid point (i, j) at time instant k. The expression with
second derivative in (1) is approximated at a given grid
point (i, j) using a central difference scheme:

a
∂2ϑ

∂y2

∣∣∣∣k
i,j

≈ a

∂ϑ
∂y

∣∣∣k
i+ 1

2 ,j
− ∂ϑ

∂y

∣∣∣k
i− 1

2 ,j

1
2 (∆yi−1 +∆yi)

(5)

Using approximations for the first order derivatives in the
numerator according to

∂ϑ

∂y

∣∣∣∣k
i+ 1

2 ,j

≈
ϑk
i+1,j − ϑk

i,j

∆yi
(6)

∂ϑ

∂y

∣∣∣∣k
i− 1

2 ,j

≈
ϑk
i,j − ϑk

i−1,j

∆yi−1
(7)

and further using the relationship of the expanding grid
(Fig. 3)

∆yi = ri−1∆y1 (8)
finally yields the approximation for the second order
derivative:

a
∂2ϑ

∂y2

∣∣∣∣k
i,j

≈ a
rϑk

i−1,j − (1 + r)ϑk
i,j + ϑk

i+1,j
1
2r

2i−3(1 + r)∆y21
(9)

The transportation term in (1) is discretized using an
upwind scheme as described for example in Ferziger et al.
(2008). Considering the fixed transportation direction of
the edge band (in positive x-direction) the upwind dis-
cretization is given by

v(t)
∂ϑ(x, y, t)

∂x

∣∣∣∣k
i,j

≈ vk
ϑk
i,j − ϑk

i,j−1

∆x
, (10)

where vk denotes the speed at time instant k and ∆x is the
distance between two grid points along the x-axis. Putting
it all together, we obtain an explicit expression for the
temperature at grid point i, j at time instant k + 1 given
the temperatures at time instant k as

ϑk+1
i,j = 2Mirϑi−1,j +

(
1− 2Mi(1 + r)− vk

∆t

∆x

)
ϑk
i,j

+ 2Miϑ
k
i+1,j + vk

∆t

∆x
ϑk
i,j−1,

(11)

with

Mi =
a∆t

r(2i−3)(1 + r)∆y21
.

At the upper and lower boundaries, the grid size is not
further expanded outside the substrate (Fig. 4). Following
Baehr and Stephan (2013), discretizing the boundary
conditions (2) and (3) yields

ϑk
0,j = ϑk

2,j − 2Bik1,j

(
ϑk
1,j − ϑk

ref,j(x, V̇
k)
)

(12a)

ϑk
ny+1,j = ϑk

ny−1 − 2Biny

(
ϑk
ny,j − ϑamb

)
(12b)

with Bik1 and Biny
being the Biot-number at time instant

k for the upper and lower boundary respectively:

Bik1,j = αk
ref,j(x, V̇

k)
∆y1
λ

(13a)

Biny
= αamb

∆yny−1

λ
(13b)

As already outlined in section 2, the time variant quanti-
ties αref and ϑref depend on x and are therefore indexed
with j, whereas on the backside of the substrate, ϑamb and
αamb are assumed to be constant. Plugging (12) into (11)
yields

ϑk+1
1,j =

(
1− 2M1(1 + r)− vk

∆t

∆x
− 4rM1Bi

k
1,j

)
ϑk
1,j

+ 2M1(1 + r)ϑk
2,j + vk

∆t

∆x
ϑk
1,j−1

+ 4rM1Bi
k
1,jϑ

k
ref,j

(14)

for the upper boundary (at y = 0/i = 1) and

ϑk+1
ny,j

= 2Mny
(1 + r)ϑk

ny−1,j

+

(
1− 4MnyBiny − 2Mny (1 + r)− vk

∆t

∆x

)
ϑk
ny,j

+ vk
∆t

∆x
ϑk
ny,j−1 + 4MnyBinyϑamb

(15)

for the lower boundary (at y = W/i = ny) of the substrate.
This yields the following equation for propagating the
temperature field from time instant k to k + 1:

ξk+1 = Ak
exξ

k +Bk
exϑ

k
ref +Cexϑamb +Dexϑstart (16)

where

Ak
ex ∈ Rnynx×nynx , ξk ∈ Rnynx×1

Bk
ex ∈ Rnynx×nx , ϑref ∈ Rnx×1

Cex ∈ Rnynx×1, ϑamb ∈ R
Dex ∈ Rnynx×1, ϑstart ∈ R

The index ”ex” highlights, that these are matrices of the
explicit formulation in contrast to the implicit one derived
in section 3.3. ξk is referred to as the state vector at time
instant k and contains all temperatures of the field defined
by the grid:

ξk =


ξk1
...
ξkj
...

ξknx

 with ξkj =


ϑk
1,j

ϑk
2,j
...

ϑk
ny,j

 (17)

The resulting matrices have sparsity patterns that are
depicted in Fig. 5. In matrix Aex each of the indicated
blocks corresponds to one column of the grid, i.e. one
particular ξj . On the top left of each block (green dot)
we have:

1− 4rM1Bi
k
1,j − 2M1(1 + r)− vk

∆t

∆x
Note, that these are different for each j because the Biot
number (13) depends on αref(x, V̇ ). The same holds for
the value in the bottom right corner of each block (green
cross) which is given by:
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Fig. 5. Sparsity patterns of matrices. Only the non-zero
elements are colored.

1− 4Mny
Biny

− 2(1 + r)Mny
− vk

∆t

∆x
The main diagonal elements of Aex (green) are given by:

1− 2Mi(1 + r)− vk
∆t

∆x
.

The lower diagonal elements (pink) are given by 2rMi and
the last respective element of each block (pink crosses) by:

2Mny (1 + r)

The upper diagonal elements (brown) are given by 2Mi

and the first respective element of each block (brown dots)
by:

2M1(1 + r)

The elements introduced by the upwind discretization of
the transportation term in (1) (light blue) are given by

vk
∆t

∆x
The non-zero elements in Bex (red dots) and Cex (yel-

low crosses) are given by 4rM1Bi
k
1,j and 4MnyBiny re-

spectively. The computational effort can tremendously be
reduced using highly efficient sparcity exploiting libraries.

3.3 Implicit formulation via Crank-Nicolson

To improve numerical stability and accuracy, an implicit
Crank-Nicolson time stepping scheme is derived in the se-
quel for the discretized system (Baehr and Stephan, 2013),
(Ferziger et al., 2008). The derivatives are approximated
in between two time instants using the average of the
derivatives at time instant k and k + 1. For the second
order derivative in (1) this yields:

∂2ϑ

∂y2

∣∣∣∣k+ 1
2

i,j

≈ 1

2

(
∂2ϑ

∂y2

∣∣∣∣k
i,j

+
∂2ϑ

∂y2

∣∣∣∣k+1

i,j

)
(18)

The same is applied to the transport term in (1):

∂ϑ(x, y, t)

∂x

∣∣∣∣k+ 1
2

i,j

≈ 1

2

(
∂ϑ

∂x

∣∣∣∣k
i,j

+
∂ϑ

∂x

∣∣∣∣k+1

i,j

)
(19)

Plugging (9) into (18) and (10) into (19) yields an implicit
expression for the temperature at grid point i, j at time
instant k + 1. The system is now given by:

Ek+1
im ξk+1 + Fk+1

im ϑk+1
ref +Gimϑamb +Himϑstartξ

k+1

= Ak
imξ

k +Bk
imϑ

k
ref +Cimϑamb +Dimϑstart

(20)

The structure of the matrices is depicted in Figure 5. The
main diagonal elements of Aim and Eim (green) are given
by

1−Mi(1 + r)− vk
∆t

2∆x
for Aim and

1 +Mi(1 + r) + vk
∆t

2∆x
for Eim respectively. On the top left of each block in Aim

and Eim (green dot) we have

1−M1(1 + r)− vk
∆t

2∆x
− 2rM1Bi

k
1,j

for Aim and

1 +M1(1 + r) + vk+1
∆t

2∆x
+ 2rM1Bi

k+1
1,j

for Eim. On the bottom right of each block in Aim and
Eim (green cross) we have

1−Mny
(1 + r)− vk

∆t

2∆x
− 2Mny

Biny

for Aim and

1 +Mny
(1 + r) + vk+1

∆t

2∆x
+ 2Mny

Biny

for Eim. The lower diagonal elements of Aim and Eim

(pink) are given by rMi for Aim and −rMi for Eim

respectively. On the bottom right of each lower diagonal
in Aim and Eim (pink cross) we have Mny

(1 + r) for Aim

and −Mny
(1 + r) for Eim. The upper diagonal elements

of Aim and Eim (brown) are given by Mi for Aim and
−Mi for Eim. On the top left of each upper diagonal in
Aim and Eim (brown dot) we have M1(1 + r) for Aim

and −M1(1 + r) for Bim. The elements introduced by the
upwind discretization of the transport term in (1) (light
blue) in Aim, Eim, Dim and Him are given by

vk
∆t

2∆x
for Aim and Dim and

−vk+1
∆t

2∆x
for Eim and Him. The non-zero elements in Bim and
Fim (red dots) are given by 2rM1Bi

k
1,j for Bim and

−2rM1Bi
k+1
1,j for Fim. The non-zero elements in Cim and

Gim (yellow crosses) are given by 2Mny
Biny

for Cim and
−2Mny

Biny
for Gim.

4. MODEL SELECTION AND OPTIMIZATION

To be used in a real-time setting such as model-based
control, the model needs to be computationally as cheap
as possible while at the same time deliver accurate simula-
tions of the real-world process. To achieve this, we want to
choose the discretization grid as coarse as possible while
maintaining a sufficient amount of accuracy.

In section 3 we derived an explicit (16) and an implicit
(20) integration scheme for the governing PDE (1). A
comparison of the two approaches shows that of course
one simulation step of the explicit model takes less time
than one of the implicit, but we have to choose very small
time steps to maintain numerical stability, whereas in the
implicit approach we can choose the time step arbitrarily
large in terms of numerical stability and only need to
focus on accuracy. Figure 6 shows a runtime comparison
of the two approaches. In both cases a physical time of 50 s
was simulated and realistic trajectories of the volumetric



Fig. 6. Comparison of computation time. Simulation was
carried out over 50 s physical time which corresponds
to 50000 simulation steps in the explicit model and
1250 steps with the implicit model. The simulation
was carried out in Matlab on an Intel CoreTM i7-
8850H @ 2.60GHz.

air flow V̇ (t) and speed v(t) were used, similar to the
one depicted in Fig. 10. The time step was chosen to be
40ms in the implicit formulation, whereas in the explicit
approach we are forced to choose a time step not larger
than 1ms in order to maintain numerical stability. The
overall simulation time therefore is lower with the implicit
approach by a factor of roughly 10 compared to the explicit
one (Fig. 6). We also evaluate the loss of accuracy that
comes with using a coarse grid. Like before, we simulate a
realistic trajectory for 50 s physical time with both models
(coarse grid and fine grid) and compare the obtained
results. Likewise we use the resulting surface temperature
after passing the heating zone as comparative value. The
root-mean-square error (RMSE)

J(nx, ny, r) =
1

N

√√√√ N∑
k=1

(
ϑk,fine
1,nx,fine

− ϑk,test
1,nx

(nx, ny, r)
)2
(21)

serves as a measure for the accuracy loss, where N denotes
the number of time steps. The grid is fully determined
by the parameters nx and ny (number of grid points in
each direction) as well as the grid expansion factor r. For
the reference simulation with a fine grid, which serves as
the ground truth we chose nx,fine = 50, ny,fine = 30 and
rfine = 1.05, which results in a rather big system with
1500 grid points. We use the implicit integration scheme
(20) with a time step of 40ms. For a given number of grid
points nx and ny we can still freely choose the expansion
factor r resulting in a better or worse accuracy. To ensure
the optimal setting, we minimize the RMSE over r for
each regarded combination of nx and ny by solving the
following optimization problem:

J⋆(nx, ny) = min
r

J(nx, ny, r)

s.t. 1 ≤ r ≤ 2
(22)

The search space is bounded by imposing constraints on r.
The optimization was carried out by brute force, testing r
in the considered range with a distance of 0.01 for any
given nx, ny combination. It is worth mentioning that
for some combinations of nx, ny and r the explicit model
became numerically unstable.

However, on the tested points it was always possible to
find a value for r for which the simulation was stable. The

Fig. 7. Comparison of accuracy, explicit vs. implicit model.
Simulation was carried out over 50 s physical time
using realistic trajectories of the input quantities V̇ (t)
and v(t).

results are summarized in Fig. 7. It can easily be seen
that also in terms of accuracy the implicit formulation
outperforms the explicit model. Thus, we can get a higher
level of accuracy with less computational effort using the
implicit rather than the explicit approach. We therefore
choose to continue with the implicit model in the sequel.
Given the achievable accuracy for each setting (Fig. 7) we
need to choose the grid parameters nx and ny.

For achieving a good trade-off between accuracy and a
coarse grid, four promising grid settings according to Fig. 8
are selected. From the plot it can be seen that there are
some sweet spots that yield comparably high accuracy (low
RMSE) for a relatively coarse grid. For the remaining part
of this paper we will use the setting number 3 from Fig. 8,
which is defined by the parameters nx = 10, ny = 10,
r⋆ = 1.25 with r⋆ being the argmin of (22).

5. PARAMETER FITTING AND EXPERIMENTAL
RESULTS

The values of thermodynamical parameters, like density ρ,
thermal conductivity λ and the specific heat capacity cp
are not exactly known. Thus, measurement data is used

Fig. 8. Accuracy of different grid settings. Left: dark blue
corresponds to high accuracy (low RMSE), yellow cor-
responds to low accuracy (high RMSE). The selected
points are marked in red. Right: The RMSE is plotted
for the selected grid settings on the left.



Fig. 9. Experimental setup

to estimate these parameters by minimizing the difference
between the simulated and measured temperature. Since
λ and ρ only enter the model multiplicatively in the
combined parameter a (1), they cannot be estimated
independently. Instead, the combined parameter Θ =
cp · ρ is introduced. Note, that λ does enter separately
through the Biot-number (13). The optimization problem
is formulated and solved for obtaining those parameter
values that lead to an accurate fit between simulated and
actual temperatures measured on the real process (Fig. 9).
The used trajectory is depicted in Fig. 10. It represents a
realistic scenario for the regarded process. Summarizing
the parameters in a vector Ψ

Ψ = [λ,Θ]
⊤

(23)

we can formulate the optimization problem as follows:

Ψ⋆ = argmin
Ψ

F (Ψ) (24a)

s.t. λmin ≤ λ ≤ λmax (24b)

cp,min · ρmin ≤ Θ ≤ cpmax · ρmax (24c)

With F being the RMSE between the final surface temper-
ature at x = L of the measured and simulated trajectories:

F (Ψ) =
1

N

√√√√ N∑
k=1

(
ϑk,meas − ϑk,sim

1,nx
(Ψ)
)2

(25)

The lower and upper bounds are constraining the param-
eters to stay in a physically reasonable range. To solve
the optimization problem (24) we use CasADi (Andersson
et al. (2019)) with the interior point solver IPOPT.

Figure 10 shows a comparison between the simulated
temperature with optimized parameters and the measured
temperature obtained by experiment. It can be seen that
they are in good agreement. However, there is still room
for improvement as discussed in the next section. The
mean difference between the measured and the simulated
temperature is 1K and the standard deviation is 10.6K.

6. CONCLUSION AND FUTURE WORK

The model developed in this paper delivers accurate results
that are in good agreement with the measured data as de-
picted in Fig. 10. However, a delay between the measured
and the simulated data can be observed. This can be traced
back to the communication delays in the experimental
setup, which are not considered in the model. Furthermore,
it is obvious that the stationary temperatures in some
operating points are not exactly matched. This mismatch
most certainly stems from two different effects that were
not considered in our model. First, the temperature of the

Fig. 10. Trajectories of test scenario.

heated air varies slowly over time, which obviously influ-
ences the substrate’s temperature. Second, the nozzle used
in the experimental setup cannot be completely sealed,
resulting in some air leakage especially in regimes with
high air pressure. Future work might therefore focus on
developing an adaptive approach, where some parameters
are estimated online in order to obtain even more accurate
simulation results in a real-time online setting.
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